
ManiLadder : Benchmarking Manipulation Intelligence Frontier
via a Categorized and Multi-Level Task Ladder

Fig. 1: The ManiLadder benchmark. It comprises 4 difficulty levels, each with 8 task-category units combining diverse
object types (rigid, articulated, deformable), end-effectors (grippers, dexterous hands), and embodiments (single-, dual-, and
mobile-arm). Each unit contains 3∼4 tasks, totaling 114 simulated manipulation tasks.

Abstract— We introduce ManiLadder, a large-scale simula-
tion benchmark designed to quantitatively assess progress in
robotic manipulation intelligence and capacity. It turns How
difficult a task can my algorithm solve? into a measurable
ladder to climb. ManiLadder consists of 114 simulation tasks
spanning four difficulty levels, covering diverse object types
(rigid, articulated, and deformable) and robot embodiments
(single-arm, dual-arm, grippers, and dexterous hands). Each
task is paired with 50 high-quality human demonstrations. To
construct ManiLadder, we propose a Metric-Anchored Iterative
Task Ladder DEsign (MILE) pipeline: tasks are tuned until
their objective composite scores fall into predefined difficulty
intervals, as measured by 2D- and 3D-based imitation learning
policies. Our experiments show that commonly used imita-
tion learning algorithms achieve performance corresponding
roughly to Level 2, revealing a significant gap to higher-
level manipulation competence and setting clear targets for
future research. We further provide preliminary results on
vision-language-action (VLA) models and transfer learning.
Additional experiments and videos are available on our website.

I. INTRODUCTION

Recent years have witnessed remarkable advances in the
field of robotic manipulation, encompassing more afford-
able and user-friendly hardware [1, 2], powerful foundation
models [3, 4], effective training algorithms [5, 6], as well

as large-scale datasets [7, 8], strengthening the belief that
generalizable and broadly capable manipulation agents are
increasingly within our reach. These advances have, in turn,
amplified the need for a new benchmark capable of fairly
quantifying progress in robotic manipulation intelligence and
evaluating how far we are from a robot with AGI-
level manipulation capacity. However, current benchmarks
in robotic manipulation lag considerably behind the huge
progress in hardware, algorithms, models, and datasets. Most
of benchmarks focus on evaluating specific dimensions of
manipulation tasks and policies such as task horizon [9],
generalization ability [10], sim2real transfer ability [11], and
continual learning [8], which makes researchers frequently
choose different benchmarks or even self-designed tasks
when evaluating their novel algorithms and models [12, 13].
This makes it challenging to precisely evaluate the level of
task difficulty a model can successfully handle, and thus
to determine whether it represents a genuine step toward
general-purpose intelligent robots relative to prior work.

To build such a benchmark for systematically evaluating
the progress of manipulation capacity, one approach is to
assemble a suite of simulation-based manipulation tasks
organized by difficulty. Intuitively, there are two ways to
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Benchmark Simulator No. of tasks Human demonstrations Task Diversity W/ deformable objects Real-world reproducibility

MetaWorld [14] Mujoco [15] 50 ✗ Objects ✗ ✗
FactoredWorld [16] Mujoco [15] 19 ✗ Different goal shapes of cubes ✗ ✓
COLOSSEUM [10] V-Rep [17] 20 ✗ Objects, camera, and visual perturbations ✗ ✓

LIBERO [8] Mujoco [15] 120 ✓ Objects ✗ ✗
ManiLadder (ours) Genesis [18] 112 ✓ Objects, robots, difficulty levels ✓ ✓

TABLE I: Comparison between ManiLadder and other manipulation benchmarks focusing on task taxonomy and difficulty
levels. ManiLadder is a large-scale benchmark and is the only one that involves different robots, difficulty levels, and
deformable objects. Building upon Genesis [18], we also enabled large-scale GPU-accelerated parallel simulation. Similar
to previous works, we also reproduce part of the tasks in the real-world.

divide task difficulty levels when constructing this task
suite: 1) Direct Method: directly defining task difficulty
based on the intrinsic properties of the task itself, such as
the objects involved and the types of skills required; 2)
Indirect Method: indirectly defining task difficulty by using
objective metrics derived from policies executed on the task,
such as success rate. For the first way, prior works have
tried to model task complexity purely from a theoretical
standpoint [19, 20], from intuition [21], from compositions
and transferring subskills [22, 23], or manually defined pred-
icate verbs [24, 25] and contact patterns [26–28]. However,
the inherent complexity of manipulation tasks makes these
methods overly simplistic, lacking practical algorithms for
assigning difficulty levels to arbitrary tasks.

For the second way, when defining task difficulty through
policy performance, two key challenges arise: (i) selecting
a policy applicable across a broad spectrum of tasks, and
(ii) specifying performance metrics that are both fair and
comparable across diverse tasks. Thanks to recent advances
in robot imitation learning algorithms [4, 5, 29] that can
perform reasonably well on a wide range of tasks, the
first issue is largely addressed. For the second question,
while success rate is a popular metric in manipulation, it is
coarse and one-dimensional, failing to capture finer-grained
aspects of performance [30], so we need to devise composite
evaluation metrics that are broadly applicable and better
reflect nuanced differences across large-scale task suites.

In this work, we present ManiLadder, a comprehensive
and systematic simulation benchmark for robotic manipu-
lation that organizes tasks into well-defined categories and
multiple difficulty levels. By framing task difficulty as a
ladder to climb, ManiLadder provides a measurable path
toward human-level manipulation competence and offers the
community a clear policy-based metric for assessing and
advancing algorithmic capability. It comprises four difficulty
levels. Within each level, we construct standardized mini-
suites spanning two object families (rigid and articulated,
and deformable) and four robot embodiments (single-arm
with gripper, single-arm with dexterous hand, dual-arm with
grippers, and dual-arm with dexterous hands). Each mini-
suite contains three to four tasks, yielding a total of 112
carefully designed manipulation tasks, as shown in Figure
1. ManiLadder covers a diverse spectrum of object cate-
gories, supports multi-view stereo observations, and enables
large-scale parallel simulation based on the Genesis [18]
simulator. Every task is paired with a well-specified reward

function, 50 high-quality human demonstrations, a visual-
based teleoperation interface, and reference algorithms for
benchmarking. To stratify task difficulty, we adopt the in-
direct method and introduce Metric-Anchored Iterative Task
Ladder DEsign (MILE) pipeline: tasks are tuned until their
objective composite scores fall into predefined difficulty in-
tervals, as measured by 2D- and 3D-based imitation learning
policies (2D diffusion policy [5] and 3D diffusor actor [29]).
The composite metric jointly accounts for task success rate
and stage-wise progress, providing a more fine-grained and
robust assessment of difficulty.

In our experiments, we observed that current common
imitation learning algorithms typically perform at approxi-
mately Level 2 on ManiLadder, thereby motivating further
research toward more capable robotic manipulation learning
algorithms. We also perform initial experiments on Mani-
Ladder for Vision-Language-Action models on our website.
We envision ManiLadder as a stepping stone for measuring,
tracking, and accelerating advances in robotic manipulation
intelligence, while also fostering progress in broader areas
such as transfer learning and continual learning.

II. RELATED WORKS

A. Robot Manipulation Task Taxonomy

Classification and taxonomy for a research problem can
provide a structured framework that enables targeted method-
ological approaches and systematic knowledge organization.
However, for robot manipulation tasks, it is challenging to
divide robotic manipulation tasks into concise and well-
defined categories, due to the extreme complexity arising
from the tasks themselves, the diversity of the objects in-
volved, and the variety of end effectors employed [28]. Some
works use grasp types and contact modes [28, 31] or task
primitives and skills [23, 32, 33] for task taxonomy. Others
provide taxonomies for specific tasks, such as deformable
object manipulation tasks [34] or bi-manual manipulation
tasks [35]. However, the criteria underlying these task classi-
fications are overly detailed and restrictive, making it difficult
to accommodate complex, multi-stage tasks. In this work, we
categorize robot manipulation tasks using two axes: the hor-
izontal axis represents different tasks of the same difficulty
level, distinguished by the type of manipulated object and
the end effector employed; the vertical axis represents tasks
of varying difficulty levels designed and measured by our
MILE method, in which the object type and end effector
remain the same.
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Fig. 2: The system design of ManiLadder. Top: the control
and interaction logic and robots diagram. We implement
modular classes, including Environment, Robot, Controllers,
and Sensor, to standardize user workflows. Bottom: the
reset() and step() logic in ManiLadder.

B. Robot Manipulation Benchmarks and Evaluations

There are numerous simulation manipulation bench-
marks [8, 10, 14, 21, 36–39] over the years. These studies
target different aspects of manipulation research, such as
task horizon, generalization, task transfer, and task reasoning.
Simulated benchmarks offer superior reproducibility and
low-cost evaluation, but face sim-to-real gaps that fail to ac-
curately reflect real-world policy performance. On the other
hand, there are also many real-world benchmarks [30, 40–44]
or in-person challenges [45, 46] for robot manipulation tasks.
These works try to ensure reproducibility with manuals for
environment setups or enabling remote access to a centrally
hosted evaluation platform. However, reproducibility and
high participation barriers remain the greatest challenges
faced by them. Despite the sim2real gap, we argue that
using the objective, policy-based indirect method to define
task difficulty yields a benchmark design principle that can
transfer from simulation to the real world: conclusions drawn
from simulation-based difficulty-stratified benchmarks are
expected to remain consistent with those from real-world
counterparts, even if the specific tasks differ. In this work,
we choose to build ManiLadder in simulation.

III. THE MANILADDER BENCHMARK

ManiLadder is a benchmark designed to evaluate robotic
manipulation capabilities across different object and robot
types (the horizontal axis) with varying difficulty levels
(the vertical axis). In this section, we begin by presenting
the ManiLadder system diagram and the setup of the base
environment, followed by its horizontal axis, and the accom-
panying teleoperation system for data collection.

Fig. 3: The base environment and camera setups of Mani-
Ladder. By default, we have 4 camera views for single-arm
tasks (front, left, top, robot), and 5 camera views for dual-arm
tasks. We process the fused point clouds to 1024 points, with
only 200 points on the table. The camera’s observation has
RGB, Depth, Segmentation, and Normals simultaneously.

A. Base Environment and System Design

ManiLadder is built upon Genesis [18], which is a cross-
platform simulator that supports both rigid body and de-
formable objects, as well as GPU-based parallel simulation.
To standardize the interaction between policy and environ-
ment, we establish a modular system upon the simulator
as a set of APIs for users, as shown in Figure 2. These
modular APIs provide useful high-level abstractions tailored
for manipulation research, such as robot controllers, rewards,
observation acquisition, and object location randomization.
All these operations support batched actions, i.e., we use the
same logic for single environment simulation and parallel
simulation.

Then, we build a ManiLadderBaseEnv class, an ex-
tensible base environment that can be inherited by all other
tasks, as shown in Figure 3. To mimic realistic indoor
tabletop manipulation scenarios, we introduce a wooden-
textured floor, a trapezoidal grey back wall, and a large table,
with the table center aligned to the world origin for spatial
consistency. We provide multiple default camera views for
perception: front, left, and top views fixed in the scene, along
with a wrist-mounted camera attached to the end-effector.
All cameras support RGB, depth, segmentation, and point
cloud modalities. To support 3D perception, we offer multi-
view point cloud fusion for the scene, which merges multi-
view point clouds, crops them to the agent’s workspace, and
downsamples to a fixed number of points. We also adjust the
lighting to make the scene under better illumination.

B. Task Organization and Taxonomy

To support broad applicability and reproducibility, tasks
in ManiLadder are organized by two factors: object physical
properties and robot embodiments. For the object factor, we
follow the established distinction between rigid and articu-
lated objects versus deformable objects. The former includes
solid items with fixed geometry or articulated parts, such as
blocks, mugs, doors, and drawers. The latter encompasses
objects whose shape can change continuously under external
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Fig. 4: The objects and robots gallery in ManiLadder.

force. To reflect the diversity of such materials, we further
subdivide them into three geometric types: 1D (e.g., ropes,
cables), 2D (e.g., cloths, towels), and 3D (e.g., sponges,
plasticine, liquids), making tasks cover diverse object types.

For the robot embodiment factor, we divide tasks into
four configurations: 1) single-arm with a parallel gripper, 2)
single-arm with a dexterous hand, 3) dual arms with grippers,
and 4) dual arms with dexterous hands. We also include
mobile manipulators in some tasks, which is built upon
the model in TidyBot++ [47]. Currently, we support Franka
Panda and XArm as our robot arms, and LeapHand [2]
as our dexterous hand. We will incorporate more robot
embodiments in our later version.

For each combination of object category and embodiment
type, we design 3 tasks for rigid and articulated objects and
3 tasks for deformable objects (one each for 1D, 2D, and 3D
deformable objects). This results in a total of 112 manually
designed tasks across four difficulty levels, forming a diverse
and scalable testbed for manipulation intelligence. The object
and robot gallery are shown in Figure 4.

C. ManiLadder Objects and Task Design

We curated object assets from multiple open-source repos-
itories to ensure both diversity and physical realism. For
rigid body and articulated tasks, we primarily utilize the
YCB Object and Model Set [41] for everyday household
objects like packaged food (e.g., chips can, sugar box),
fruits (e.g., banana, strawberry), and stationery items (e.g.,
small marker), and the PartNet-Mobility dataset [48] for
articulated objects such as doors, drawers, and scissors. We
refine the scales and perform convex decomposition to ensure
these models can be positioned more appropriately in the
environment. Other rigid bodies and articulated objects are
created by ourselves.

For deformable objects, most assets are created in Blender
and then processed using Trimesh to generate simulation-
ready assets. For simulation, different deformable objects
are under different simulation techniques. For 1D objects
like ropes, we simulate flexible chains of capsule-shaped
rigid bodies connected via hinge joints using MuJoCo’s

articulation system [15]. The number of segments controls
rope resolution: higher segment counts yield more realistic
deformations at the cost of higher computational costs. 2D
deformables such as cloths are modeled using a position-
based dynamics (PBD) solver, which balances numerical
stability with real-time efficiency. For 3D deformables, we
employed different solvers tailored to the physical properties
of each material type. Clay-like objects were simulated using
the Material Point Method (MPM) solver, which robustly
handles large deformations and plastic flow while preserving
material cohesion, enabling realistic modeling of shaping
and compression tasks. Liquid objects were simulated us-
ing the Smoothed Particle Hydrodynamics (SPH) solver,
which captures high-fidelity free-surface fluid motion and
is particularly effective for tasks involving liquid–container
interactions such as pouring, mixing, and splashing.

We design multi-stage dense reward functions to de-
compose each task into sequential phases. For instance, in
a water-pouring task, rewards are structured to guide (1)
reaching the beaker, (2) grasping the beaker and aligning
it, and (3) completing the pour. In experiments, we also use
the task stage-progress as an additional metric for deciding
task difficulty levels.

D. Dataset and Teleoperation System

We designed two teleoperation systems for collecting
human demonstrations for tasks in ManiLadder, as shown in
Figure 5. Both systems support single- and dual-arm robots
as well as grippers and dexterous hands. In this work, we
used the second system for data collection. We collect 50
human demonstrations for each task.

The first system uses monocular hand-pose detection with
retargeting. A webcam placed in front of the operator streams
images in real time. Then, we apply WiLoR [49], an end-to-
end neural-network–based 3D hand reconstruction method,
to recover 3D positions of hand keypoints. To improve tele-
operation stability, we apply an exponential moving average
for temporal smoothing of the keypoint trajectories. Next, we
perform dexterous-hand retargeting [50] to map the human
hand keypoints to a robotic hand (e.g., LeapHand [2]),
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Fig. 5: The teleoperation system in ManiLadder. We use
either VR- or Camera-based system.

yielding a 6-DoF end-effector pose together with finger
joint angles. We subsequently align the human and robot
coordinate systems so that motions of the real hand can
control the simulated robot end effector. For grippers, the
distance between the index finger and the thumb serves as
the open/close signal. Because WiLoR natively distinguishes
left and right hands, the system directly supports bimanual
teleoperation. This pipeline is simple and cheap (it only
requires a webcam of about $20) and does not require
external network connectivity, making it accessible to a broad
user base. Its main drawback is latency, dominated by NN-
based monocular hand-pose and joint-angle estimation; on
an RTX 4090, the system runs at approximately 10 Hz.
The system is intended to facilitate future demonstration
collection on ManiLadder by a wide range of researchers
across the globe.

The second system uses a Meta Quest 3 VR pipeline for
hand-pose estimation and retargeting. We use the Meta Quest
3’s built-in hand-tracking algorithm to estimate the human
hand 6-DoF pose in the headset (HMD) coordinate frame.
An NGrok reverse proxy is launched on the local PC, and
the 6-DoF hand pose is streamed to the PC in real time
by enabling immersive mode on the headset and visiting
our target webpage in the headset browser. We then apply
the same retargeting procedure [50] to recover the robot
arm’s end-effector 6-DoF pose and the dexterous hand’s joint
angles. This setup offers lower latency and higher accuracy,
at the cost of a higher price (Meta Quest 3 is roughly $700)
and a requirement for external network connectivity. On an
RTX 4090, it operates at about 25 Hz.

IV. METRIC-ANCHORED ITERATIVE
TASK LADDER DESIGN

In this section, we introduce the vertical axis design
of ManiLadder: different task difficulty levels. We first

introduce the Metric-Anchored Iterative Task Ladder DEsign
(MILE) scheme, and then provide the theoretical analysis.

A. The MILE Scheme

As discussed in Section I, we aim to train demonstration-
based policies on each task and use objective metrics of the
trained policies to stratify the corresponding task difficulty
level. The workflow is naturally cyclic: begin with an initial
task, gather data and train a policy; refine the task’s difficulty
according to the observed performance; and continue this
collect–train–adjust loop until the metrics meet the desired
thresholds, as shown in the left part of Figure 6. The
key ingredients of this loop are the design of initial tasks,
the policy algorithm, and the evaluation metrics. For the
design of initial tasks, although the MILE method ultimately
partitions task difficulty using objective criteria, the design
of the initial task set still depends on human intuition and
experience. In this work, we construct initial tasks of varying
difficulty guided by two principles and along five dimensions.

Two Principles: 1) Avoid too complex object geometries.
2) Avoid tasks that can only be completed with unusual
motion skills. These choices reflect our goal of assessing
manipulation intelligence for commonplace, broadly useful
activities, rather than abilities tied to particular objects or
niche skills, for example, sleight-of-hand card shuffling or
spinning a basketball on one finger.

Five Dimensions: 1) the task horizon (steps required to
complete the task); 2) the spatial error tolerance; 3) the
complexity of objects; 4) the degree of spatial–temporal
coordination required between robots and between robots and
objects; and 5) the level of physical and functional under-
standing needed (e.g., correct tool use). Figure 6 illustrates
representative tasks designed under these guidelines.

B. Imitation Algorithm Choice

We choose two imitation learning policies for MILE to
evaluate the task: the 2D diffusion policy [5] and the 3D
Diffuser Actor [29]. We didn’t use other demonstration-based
policies, such as offline RL methods, since they perform
significantly worse than diffusion policies with visual inputs.
We also did not adopt reinforcement learning approaches, as
it is challenging to design reward functions that are fair and
consistent across different tasks.

For the 2D Diffusion Policy, we generally follow the CNN-
and UNet-based original Diffusion Policy [5] implementa-
tion, where we modify the inputs to 4 camera-view images.
The resolution of images is 224× 224. For the 3D Diffuser
Actor, we employ the standard network structure. We also
perform experiments with Vision-Language-Action Models
(VLA) on ManiLadder. In this work, we choose π0 [4], which
is a 3B VLA model pretrained on large-scale manipulation
datasets. More details are in the Appendix.

C. Evaluation Metrics

MILE integrates both outcome-oriented and progression-
oriented measures to capture task difficulty at multiple levels
of granularity:
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a) Outcome Metric: We use task success rate as the
outcome metric:

Succ(T, π) =
1

N

N∑
i=1

1{π completes task T}, (1)

where π denotes the policy, T denotes the task, and N the
number of evaluation rollouts. In addition,

b) Progression Metrics: To capture fine-grained
progress within a task, we define a set of binary stage
completion flags for key sub-goals (e.g., grasp, lift, place)
for each task, providing an interpretable measure of
intermediate progress. These signals are normalized to the
range [0, 1] and averaged across rollouts:

Prog(T, π) =
1

N

N∑
i=1

∑M
j=1 π completes mj

M
, (2)

where M is the total sub-stages of the task and mj is the
j-th sub-stage.

c) Composite MILE Score: Finally, we define the MILE
score as a weighted combination:

MILE(T ) = 0.5 · Succ(T, π) + 0.5 · Prog(T, π). (3)

This score ensures that both final completion and inter-
mediate progress are consistently reflected in the difficulty
measure. In ManiLadder, we define four difficulty levels as
follows: tasks with scores in [0.5, 1] are Level 1; [0.2, 0.5)
are Level 2; [0.1, 0.2) are Level 3; and [0, 0.1) are Level 4.

D. Theoretical Analysis

In this section, we formally prove that using the success
rate of policies trained on tasks as the criterion for strati-
fying task difficulty is consistent with the definition of task
difficulty defined by the computational complexity reduction
theory [20]. Here, we present the necessary notations and
lemmas, followed by the two theorems we prove. The
complete proof process can be found in the appendix.

A task is defined as a partially observable
Markov decision process (POMDP) with the tuple
τ = (S,A,O, p, σ, r, p0)which describes the state space,
action space, observation space, dynamics sensor, reward
function, and the initial state distribution. Let T = {τϵ} be
all tasks where τϵ denotes a specific task. Let π : O → A
denote a policy and Πϵ denotes all policies for task τϵ.
Originally, a policy πϵ is admissible on task τϵ if the
reward achieved by the policy Rϵ(πϵ) ≥ R∗

ϵ , where R∗
ϵ is

the success threshold of τϵ. In this work, we extend this
definition to accommodate using policy success rate as the
criterion for task success:

Definition 1 A policy πϵ is qδ admissible if its success
rate on task τϵ is within the range of [q − δ, q + δ), and we
denote πϵ to be π∗

ϵ and all qδ admissible policies to be Π∗
ϵ .

Fig. 7: The transformation between two tasks τ1 and τ2 using
encoder h and decoder g.

Now we can discuss how to compare the complexity
between two tasks. The central idea is, task τ1 reduces to
task τ2 if we can use any qδ-admissible policy for τ2 to
solve τ1 with qδ success rate, and according to the complicity
theory, if task τ1 reduces to task τ2, then task τ2 is at least as
complex as task τ1. To formalize this, we need to introduce
encoders and decoders, as shown in Figure 7:

Definition 2 Let O1, O2 and A1, A2 be the observation
and action spaces of task τ1, τ2. Let H1,2 denote a space
of functions from O1 to O2, and let G2,1 denote a space of
functions from A2 to A1. We will refer to a function h ∈ H1,2

as an encoder and a function g ∈ G2,1 as a decoder.
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Fig. 8: All task success rates of two policies in ManiLadder. Results are calculated from 20 evaluation trajectories.

Then we have the following lemmas from [20]:
Lemma 1 Task τ1 reduces to task τ2 (written τ1 ⪯ τ2)

if for all qδ admissible policies π∗
2 , there exists an encoder

h ∈ H1,2 and a decoder g ∈ G2,1 such that:

g ◦ π⋆
2 ◦ h ∈ Π⋆

1. (4)

Lemma 2 Task τ1 and task τ2 are equivalent (written
τ1 ≡ τ2) if τ1 ⪯ τ2 and τ2 ⪯ τ1. If τ1 ≡ τ2 holds with
probability at least δ, we say τ1

δ≡ τ2.
Then we can discuss the task difficulty levels in ManiLad-

der. Assuming all policies are trained with the same network
structure, same training algorithms, same number of data,
and same data quality (which is exactly the case in our work),
we have the following two theorems:

Theorem 1 Let Π1 and Π2 be the policies trained in τ1
and τ2 respectively. If ∀π1 ∈ Π1, π1 is p1δ admissible and
∀π2 ∈ Π2, π2 is p2δ admissible, and p1 ∈ [p2 − δ, p2 + δ)

and p2 ∈ [p1 − δ, p1 + δ), then τ1
δ/3
≡ τ2.

Theorem 2 Let Π1 and Π2 be the policies trained in τ1
and τ2 respectively. If ∀π1 ∈ Π1, π1 is p1δ1 admissible and
∀π2 ∈ Π2, π2 is p2δ2 admissible, and p1− δ1 ≥ p2+ δ2, then
τ1 ⪯ τ2.

With Theorem 1, we know that all tasks with the same
range of success rates are in the same difficulty level, which
are the tasks in ManiLadder of the same level. With Theorem
2, we know that tasks with higher success rate ranges can be
reduced to tasks with lower success rate ranges, i.e., tasks
with lower success rate ranges are in higher difficulty levels
than tasks with higher success rate ranges.

V. EXPERIMENTS

In this section, we present the MILE success rates across
all tasks in ManiLadder in Figure 8. We show the progress
metric in the supplementary materials. We can see that
current diffusion policies are generally lie in the level 2 tasks
(more than 20% success rates with 50 demonstrations).

For more experiments like VLA and real-world transfer
ability experiments, please check our website.

VI. CONCLUSION AND LIMITATIONS

In this work, we present ManiLadder, a simulation-based
robot manipulation benchmark with a categorized and dif-
ferent difficulty-level task ladder for benchmarking the ma-
nipulation capacity of current learning-based policies. Mani-
Ladder encompasses 114 diverse manipulation tasks across
different object types, robots, and difficulty levels. We use
MILE to assign the difficult levels for each task with objec-
tive metrics of policies trained on them. Our results show that
current mainstream imitation learning algorithms generally
stay at the level 2 tasks, which shows huge improvement
space for future algorithms. We envision ManiLadder as a
robust experimental platform that will support and catalyze
future advances in robotic manipulation research.

Our work has several limitations: 1) We did not design
benchmark tasks explicitly targeting task generalization. Al-
though generalization is a crucial property of generally intel-
ligent robots, constructing a single benchmark that compre-
hensively evaluates all aspects of robotic policy performance
remains a formidable challenge. This work focuses primar-
ily on assessing an algorithm’s ability to solve individual
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tasks; 2) Our domain randomization is currently insufficient
for robust sim-to-real transfer. While object positions are
randomized, camera poses, object physical parameters, and
visual attributes such as color receive limited randomization.
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