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Abstract: Functional dexterous grasping is a challenging capability essential
for robots to achieve intent-aligned interactions with objects. Existing methods
primarily focus on grasp stability without addressing functional intent. In this
work, we present Functional D(R,0) Grasp, a language-guided framework that en-
ables intent-aligned grasp generation while ensuring cross-platform adaptability.
We learn platform-agnostic intermediate representations that enable translation
from functional grasp language input to execution across different robotic hands.
This framework generates appropriate grasps for objects based on their intended
use, covering multiple functional requirements (use, hold, handover, liftup). We
demonstrate that our approach achieves a 75.1% success rate in simulation on un-
seen objects, significantly outperforming baselines. Real-world experiments with
the LeapHand platform further validate our approach. Our work bridges the gap
between functional intent and cross-platform dexterous execution, enabling robots
to perform purposeful grasps with a single unified model.

Keywords: Dexterous Grasping, Functional Manipulation, Cross-Platform Capa-
bilities

1 Introduction

Dexterous robotic grasping, particularly intent-aligned functional grasping, represents a critical
milestone in advancing robotic systems toward practical applications. The ability for robots to grasp
objects in ways that fulfill specific functional requirements—whether for object manipulation, tool
use, or human-robot interaction—is essential for effective operation in real-world environments.

Significant progress has been made in stable dexterous grasping through various approaches. Tra-
ditional optimization-based methods first achieved stable grasps by modeling contact forces and
friction cones, while more recent learning-based techniques have improved both efficiency and suc-
cess rates. These approaches include direct joint angle generation through diffusion models or re-
inforcement learning, object-centric methods using contact points or heatmaps, and implicit hand-
object representations. In parallel, functional grasping for two-finger grippers has advanced through
vision-language models that can identify task-appropriate grasp points. However, cross-platform



functional dexterous grasping—where a single model can generate functionally appropriate grasps
across different robotic hand designs—remains substantially underdeveloped.

Two key challenges impede progress in this domain. First, most existing methods prioritize grasp
stability without adequately addressing functional requirements. This limitation stems primarily
from how dexterous hand datasets are typically collected in simulators or through optimization
methods that prioritize stability metrics, making it difficult to incorporate diverse functional in-
tents. Second, cross-platform functional dexterous grasping presents significant technical hurdles.
Approaches using functional contact maps and contact points can generalize across platforms but
require lengthy optimization processes. Diffusion models easily incorporate functional language as
conditional input but lack physical interaction during generation, often leading to suboptimal grasps.
D(R,0) Grasp offers cross-platform generalization with controllable optimization time but assumes
consistent wrist poses between input and output, limiting its application to functional grasping where
wrist pose adjustments are often necessary.

To address these limitations, we present Functional D(R,0) Grasp, a language-guided framework
for cross-platform functional grasping. Our approach first translates functional language instruc-
tions into wrist poses and contact anchor points, which refine the coarse interaction intent. These
elements then feed into a platform-agnostic intermediate representation that unifies hand-object dis-
tance relationships, enabling precise joint configuration synthesis across different dexterous hand
platforms. This coarse-to-fine pipeline bridges the semantic gap between high-level functional in-
tent and low-level interactions while possessing cross-platform capabilities. Our contributions are
summarized as follows:

* We enable functional grasping across multiple dexterous robotic hands in a single model through
a coarse-to-fine pipeline with platform-agnostic intermediate representation.

* We develop semantic-conditioned grasping strategies that achieve 75.1% success rate on gen-
erating functionally appropriate grasps for unseen objects, significantly outperforming existing
functional grasping baselines.

* We create a workflow for generating high-quality dexterous hand grasping data by mapping hu-
man functional demonstrations to collision-free robotic hand configurations through retargeting
and optimization.

2 Related Works

Learning-Based Dexterous Grasping. Data-driven approaches for dexterous grasping have made
significant advances and can be categorized into three main approaches. The first approach gener-
ates joint values directly through diffusion models [1, 2]. However, these methods typically show
limited cross-platform generalization. Additionally, they lack physical interaction abilities during
both training and generation processes, and often need test-time adaptation [3, 4] or denoising guid-
ance [5] to work well. The second approach employs contact points [6] or affordance maps [7] to
predict grasp interactions. While supporting cross-platform adaptation, these approaches face com-
putational challenges due to the high-dimensional solution space. The third approach, represented
by [8], uses neural networks to model hand-object distances, offering cross-platform capabilities
and effective grasping. However, due to consistency requirements in robot encoding, this approach
typically constrains output wrist poses to remain close to input poses, limiting application flexibil-
ity. In contrast, our approach flexibly accommodates conditional inputs without constraints while
maintaining cross-platform generalization.

Functional Grasping. Functional grasping bridges human intent and robotic manipulation capa-
bilities, representing a critical research direction in robotics. For parallel grippers, recent approaches
have leveraged 3D vision and multimodal models. GraspSplats [9] constructs feature-enhanced 3D
Gaussian models to segment functional regions, while feature distillation grasping [10] employs
Distilled Feature Fields for semantic extraction. CoPA [11] implements a hierarchical perception
approach using Set-of-Mask annotations processed through GPT-4V for grasp region localization.
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Figure 1: Overview of our Functional D(R,0) Grasp framework. Left: Language-Conditioned In-
teraction Synthesis translates functional instructions into wrist poses and contact anchor points via
a diffusion model. Right: Platform-Agnostic Grasp Refinement converts these interaction elements
into a unified hand-object distance representation to generate precise joint configurations across dif-
ferent robotic hands.

Robo-ABC [12] leverages a database of annotated functional contact points with CLIP [13] for
retrieval-based transfer. These approaches primarily provide single-point coordinates requiring sub-
sequent grasp sampling like [14], limiting their applicability to dexterous hands requiring complex
optimization. Extending to dexterous functional grasping, contact code methodologies [15, 16, 17]
segment both object and hand into different regions, creating paired contact codes to guide grasp-
ing through optimization. These methods require meticulous manual annotations for each object’s
functional regions, limiting their scalability to novel objects. Other approaches [4] utilize condi-
tional diffusion models to accommodate diverse functional requirements but often cannot escape
the aforementioned limitations of diffusion models. In contrast, our work enables language-guided
functional dexterous grasping with cross-platform adaptability and efficient optimization.

Dexterous Grasping Datasets. Dexterous grasping datasets have evolved significantly, with con-
tributions including [18, 19]. However, these primarily rely on simulation and optimization, limiting
their capacity to represent diverse functional intents. Oaklnk [20] provides MoCap-based functional
grasping data using the MANO [21] hand model, covering four grasping intents across various object
categories. Our methodology builds upon these human demonstrations, constructing corresponding
robotic hand datasets through efficient retargeting [22] and grasp energy-based optimization [23, 24].

3 Methodology

3.1 Problem Formulation

Let an object point cloud with N points be P© € RNo X3 where each point contains 3D position
coordinates.

The complete dexterous hand configuration can be represented as a tuple [t, R, q], where t € R3 is
the 3D translation of the wrist, R € R3*3 is the rotation matrix representing wrist orientation, and
q € RP represents the finger joint angles with D, dependent on the specific robotic hand.

For each robot hand, we sample point clouds at fixed positions on the surface of each link, denoted as
{Py, }f\gl, where Ny is the number of links. Given a hand configuration [t, R, q], we apply forward
kinematics to obtain the corresponding robot point cloud P® ¢ RV=*3,

For each grasp, we define a structured language instruction £ in the format: [Grasp Intent] a [Object
Name] by [Part], where [Grasp Intent] can be one of {Use, Hold, Handover, Liftup}, [Object Name]
identifies the target object, and [Part] specifies the primary contact part of the object. This instruction
is encoded into a language embedding f* € R”s using a ViT-B/32 text encoder.



3.2 Coarse-to-Fine Functional Grasp Synthesis

We propose a coarse-to-fine approach that progressively refines language instructions into precise
grasp configurations through platform-agnostic intermediate representations. Our approach consists
of two key stages: (1) language-conditioned synthesis of coarse interaction elements (wrist pose
and contact anchor points), and (2) refinement of these elements into precise hand configurations
through a cross-platform intermediate representation.

3.2.1 Language-Conditioned Interaction Synthesis

Unlike previous approaches that generate complete joint configurations directly, we first translate
functional language instructions into essential interaction elements that define how the hand should
engage with the object. Specifically, we model wrist pose [t, R] and functional contact anchor points
A € RE*3 on the object surface, where K is the number of anchor points. We set K = 4 in our
implementation.

We implement a conditional denoising diffusion probabilistic model (DDPM) [25]. We first extract
features from both the object and robot representations. The object point cloud P© € RVo*3 and
robot hand point cloud P® € RM=*3 are processed through PointNet++ [26] encoders, getting
feature representation f©, f* € RNs*DPs respectively. These features are concatenated with the
language embedding f* to form the conditional input f = [f*; £©; ££] for the diffusion model.

During the diffusion process, we follow a fixed noise schedule 3; to gradually corrupt the original
interaction elements through a Markov process:

q([te, Ry, Ay [te—1, Re—1, Ap—1]) = N([te, Ry, Agls 1 = Befte—1, Re—1, Ay 1], BI) (D)

With oy = 1 — j3; and at = [] 4 = 1« this corruption process can be expressed directly in terms
of the original elements:

Q([ttv Rt7 Af] | [t07 R07 AO]) = N([t’tv Rt7 At]a @[th ROa A0]7 (1 - O_lf)I) (2)
The diffusion model is trained with a mean-squared error objective:
Limpte = Eq [t5,Ro,a0],¢[/l€ — €5 ([ts, R, Ag], f, )17 3)

where €, is a transformer-based noise prediction network with cross-attention to the conditional
embedding f. During sampling, the model reverses the diffusion process to generate interaction
elements conditioned on the feature representation:

T
po([t, R, AJlf) = p([tr, Ry, A]) Hpe([tt—la Ri—1, Ara]|[te, Re, A, f) )

t=1
3.2.2 Platform-Agnostic Grasp Refinement

We design a platform-agnostic intermediate representation that seamlessly integrates the coarse in-
teraction elements from the previous stage. This representation translates them into a unified hand-
object distance matrix that satisfies the functional intent, enabling precise prediction of joint param-
eters across various robotic hand platforms.

First, we derive a contact importance map 2 € RV¢ from the predicted anchor points A. For each
point p; in the object point cloud, we compute its distance to the nearest anchor point:

d(p;, A) = min ||p; — a; 5
(pi, A) ajeAle ill2 (5
We then normalize these distances using a sigmoid-based function to create the contact importance

map:
Q; =1—2-(Sigmoid(2d(p;, A)) — 0.5) (6)

This importance map highlights regions of the object that should be contacted based on the func-
tional intent.



We use importance sampling based on the values in {2 to select 256 contact-critical points PZ, from

the object point cloud. We then sample an additional 256 points PG, using farthest point sampling
(FPS) to ensure comprehensive coverage of the object geometry. The final object representation is
the concatenation of these point sets with their corresponding importance values:

Pr(gﬁned = {[Pgin Qerie] [ngs» Qpps]} € R>2*4 @)

Next, we reposition the hand point cloud using the predicted wrist pose while maintaining an open
finger configuration with small random variations to ensure diversity in the initialization:

PR = FK ([t. R, ai, {Pr, )Y, ) € RN=3 ®)

We extract point-wise features from both the hand and refined object point clouds using
DGCNN [27] encoders and incorporate language information into these features:

R

¢ = Fu(fF(PR), ) € RN=*Ds 9)
67 = Fin( £ (PGinea), £5) € RP12XDs (10)

where Fiy is a feature integration function that combines point features with language embeddings.

Following [8], we establish correspondences between robot and object features using cross-attention
transformers, resulting in transformed feature representations Y™ and 9©. We then compute a
distance representation between each pair of hand and object points:

D(R,0),; = K@, 45) (11)

where D(R, O), ; represents the predicted distance between the i-th hand point and the j-th object
point, and K is implemented as a softplus function followed by a MLP.

Through spatial point cloud localization algorithms, we derive the final grasp joint values q from
this distance matrix, resulting in a complete grasp configuration [t, R, q].

We train this refinement network using a combination of losses:

Liotal = AdistLdist + Adepth Ldepth + AsE3)LSE3) (12)

where Lgise measures L1 distance between predicted and true hand-object distances, Lgepm prevents
collisions using SDF, Lsg(s) calculates differences between predicted and true 6D poses.

It is worth noting that our platform-agnostic intermediate representation is highly flexible, capable
of accepting anchor points as input and solving for grasps in a short time, making it straightforward
to interface with higher-level vision-language models (VLMs) or vision-language action models
(VLAs), thereby further broadening its range of applicable scenarios. Additionally, the represen-
tation can also accommodate other conditional inputs to guide the learning of hand-object distance
relationships, demonstrating its versatility across various functional grasping contexts.

3.3 Dataset Construction

We leveraged human hand functional demonstrations from the OakInk dataset [20] and converted
them to dexterous hand configurations for multiple robotic platforms. The dataset construction
workflow consists of the following two components, which efficiently generate collision-free func-
tional grasps:

Human-to-Robot Grasp Retargeting. Using the AnyTeleop [22] framework, we retargeted
MANO [21] hand parameters to ShadowHand (5-finger), Allegro (4-finger) and LeapHand (4-
finger). To address size differences, we applied appropriate scaling to both the MANO hand and
objects to optimize the retargeting process.

Since retargeting alone does not guarantee force closure and may introduce penetration issues, we
applied grasp energy-based optimization from BoDex [23] to refine the generated grasps. After



optimization, we validated each grasp in MuJoCo simulation following the DexGraspBench protocol
and retained only the successful cases. Detailed retargeting and optimization parameters can be
found in Appendix B.

Functional Language Construction. For each grasp, we constructed a functional language instruc-
tion following the format ”’[Grasp Intent] a [Object Name] by [Part]”. We used Oaklnk’s original
annotations for [Grasp Intent] and [Object Name], while determining [Part] through analysis of
hand-object interactions. Let F' = { f1, fa, ..., f5} represent the fingertip points on the hand and P,
denote points belonging to object part j. We first determine each fingertip’s contact part:

C(f;) = argmin; minpep, || f; — p|| if min,ep || fi — pl| < 0.05m
Z argmin; || f; — ;| otherwise

where c; is the centroid of part j. The primary contact part is then:

5

[Part] = argm?X;H[C(fi) = 7]

where [[-] is the indicator function. This approach effectively identifies the primary interaction
region even for suspended grasps with limited contact points.

The functional contact anchor points A for training our model are constructed from the object points
that have minimal distances to each fingertip link.

4 Experiment
4.1 Dataset

Following the dataset construction workflow described in Section 3.3, we use three retargeting
robotic hand datasets: Shadowhand, Allegro and LeapHand. We split the dataset by objects with
an 8:1:1 ratio for training, validation, and testing.

4.2 Evaluation Metrics

To comprehensively evaluate our approach, we employ two complementary metrics that assess both
physical grasp stability and functional intent alignment:

Success Rate: We evaluate grasp stability in mujoco simulation. Each grasp starts from a pre-grasp
pose and closes to a squeeze pose. We apply gravity along six orthogonal directions. A grasp is
considered successful if the object’s displacement remains within 5 cm for over 3 seconds in all
directions.

Functionality: We assess functionality via chamfer distance metrics and human evaluation. For
human assessment, each object category, we sample 3 objects and 2 functional instructions. An-
notators are shown grasp images with corresponding instructions. Our evaluation protocol includes
two assessment types: (1) comparative evaluation, where participants rank pairs of grasps based on
their functional appropriateness, and (2) absolute scoring, where participants rate each grasp on a
0-3 scale (3: fully satisfies the functional intent, 2: mostly satisfies, 1: partially satisfies, O: does not
satisfy).

4.3 Qualitative Results

We evaluate our approach against baseline methods and analyze cross-platform performance to val-
idate our coarse-to-fine functional grasping framework’s effectiveness.

Comparison with Diffusion-Based Methods. Since existing functional dexterous grasping models
and their corresponding datasets are not publicly available, we compare with Scene-Diffuser [2], a
representative diffusion-based hand pose generation method. We modified Scene-Diffuser to accept
functional language embeddings as input to enable fair comparison. The results are shown in Table 1.



Table 1: Comparison with baseline methods on unseen objects

Training Data \ Model Hand SSRT (Success Rate) CDJ (Distance)
Set 2 Scene-Diffuser Shadow 40.9% 3.06
(Shadow) Ours Shadow 66.5% 2.64
Scene-Diffuser Shadow 46.1% 3.01
Set 2 Ours Shadow 75.1% 2.61
(Multi-hand) | "y, Allegro 65.0% 5.8
Ours Leap 40.2% 6.5

Our approach significantly outperforms the baseline in success rate, achieving 75% compared to
Scene-Diffuser’s 41%. We attribute this improvement to our coarse-to-fine design philosophy. By
employing diffusion models as generators of initial representations, we effectively process condi-
tional language inputs and refine them into appropriate wrist pose and anchor point representations.
Subsequently, our platform-agnostic intermediate representation layer is particularly well-suited for
processing and applying low-level conditional inputs, enabling accurate hand configuration across
multiple dexterous platforms and refining finger-object contacts through the hand-object distance
representation. Functionality [Waiting for writing].

Cross-Platform Performance. To evaluate our framework’s cross-platform capabilities, we trained
models on different combinations of robotic hand data. The results in Table 1 show that our multi-
platform model (3 hand version) trained on Shadowhand, Allegro, and LeapHand data achieves a
higher success rate (75.1%) compared to the single-platform model (66%). This performance gain
demonstrates the benefit of learning from diverse hand morphologies, which enhances the model’s
ability to generalize functional grasping principles.

5 Conclusion

We present Functional D(R,0) Grasp, a language-guided framework for functional dexterous grasp-
ing with cross-platform adaptability. Our coarse-to-fine approach first predicts appropriate wrist
poses and anchor points through a conditional diffusion model, then optimizes finger configurations
using hand-object distance representations. This platform-agnostic intermediate representation ef-
fectively bridges the gap between language-specified intent and physical execution across different
robotic hands. Experimental results demonstrate our method achieves a 75.1% success rate on un-
seen objects in simulation and transfers successfully to real-world scenarios using the LeapHand
platform.

Our current approach has two main limitations: performance degrades when handling objects from
unseen categories beyond our training distribution, and the functional categories we explore (use,
hold, handover, liftup) do not yet cover the full spectrum of manipulation intents.

Future directions include enriching the hand-object representation methods to provide more robust
intermediate representations, and gradually improving support for out-of-distribution object grasp-
ing.
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A Implementation Details

A.1 Point Cloud Processing

For the object point cloud, when processing input for the DDPM, we perform random sampling to
obtain 2048 points from the original 65536 points. For point clouds input to the Platform-Agnostic
Grasp Refinement, when using Anchor Points as a condition during training, we perform importance
sampling based on Contact Map values to select 256 points, then use these points as initialization
to perform Farthest Point Sampling (FPS) for the remaining 256 points, resulting in a total of 512
points. When not using Anchor Points as a condition, we directly perform random sampling to
obtain 512 points.


http://doi.acm.org/10.1145/3130800.3130883

B Human-to-Robot Retargeting

B.1 Retargeting Configuration

We follow the AnyTeleop [22] framework for retargeting, with scaling factors determined based on
the size relationships between the MANO [21] Hand and the robotic hands. We enlarged both the
objects and hands to achieve better remapping effects: ShadowHand with no scaling, Allegro with a
scaling factor of 1.9, and LeapHand with a scaling factor of 1.8.

Since we use static frames for retargeting while the AnyTeleop retargeting process is designed
for sequences, we repeated each static frame 20 times to create a sequence, better aligning with
AnyTeleop’s design flow.

B.2 Grasp Optimization Parameters

Since BoDex was originally designed for grasp synthesis, while our grasps are already reasonably
correct configurations, we modified its optimization parameters to avoid large deviations from the
initial retargeted positions. We reduced the joint angle search amplitude to 0.01 for ShadowHand and
0.05 for LeapHand and Allegro, maintaining a balance between optimization and position preserva-
tion.

C Additional Results

C.1 Ablation Studies

During the training process of our three-hand data version, we conducted ablation studies to evaluate
the influence of different components.

Effect of Contact Anchor Points We observed that introducing contact anchor points can slightly
reduce the Chamfer Distance (CD) while supporting more flexible inputs and faster convergence.
However, we noticed a small performance decrease in success rate testing, as shown in Table 2.

Table 2: Ablation studies on the impact of contact anchor points

Configuration Success Rate (SSR)  Chamfer Distance (CD)
Without Anchor Points 75.1% 2.61
With Contact Anchor Points 71.4% 2.58

Wrist Pose Prediction Analysis For wrist pose prediction, we found that without the prediction of
wrist pose, the Platform-Agnostic Grasp Refinement component cannot correctly predict the corre-
sponding hand-object distance representation matrix due to limitations in the robot encoder’s ability
to encode different rotations. This renders the component unable to function properly. We plan to
further explore the influence of encoder configurations on this component in future experimental
designs.
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